
CS 4530: Fundamentals of Software Engineering

Module 5: Concurrency Patterns in Typescript

Jonathan Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson
• At the end of this lesson, you should be prepared to:

• Explain how to achieve concurrency through asynchronous
operations and Promise.all in TypeScript.

• Write asynchronous and concurrent code in TypeScript using
async/await and Promise.all.

2

Masking Latency with Concurrency
• Consider: a 1Ghz CPU executes

an instruction every 1 ns
• Almost anything else takes

forever (approximately)

3

CPU 1

thread0() Main
Memory

CPU 1 Cache
100ns7ns SSD

150,000ns (just to read 4KB)

Magnetic HD

10,000,000ns (just to seek!)

Remote Computer
(Internet in between)

~100,000,000ns
Earth to moon: ~16,000,000 inches

• Utilize this “wasted” time by
doing something else

• Processing data
• Communicating with remote hosts
• Timers that countdown while our app is

running
• Waiting for users to provide input

Pre-emptive Multiprocessing
• OS manages multiprocessing with multiple
threads of execution

• Processes may be interrupted at
unpredictable times

• Interprocess communication by shared
memory

• Data races abound
• Really, really hard to get right: need critical
sections, semaphores, monitors (all that
stuff you learned about in op. sys.)

An alternative model: cooperative
multiprocessing
• OS manages multiprocessing with
multiple threads of execution

• Each thread decides when it should yield
to let other threads execute

• Typically via a yield or await operation

JavaScript/TypeScript implements Cooperative
Multiprocessing Using “run-to-completion”
semantics
• JS has primitives that allow one
computation to start another
computation that runs concurrently with
the first.

• These are almost always IO operations.
• However, the original computation
always runs to completion.

Run-to-completion semantics
• A computation runs continuously until it
is either suspended or completed.

• This means that only one of your
computations is running at any time (in
addition to whatever asynchronous IO is
running)

• A computation is suspended when it hits
an ‘await’. The runtime system (node.js,
for us) chooses what to do next. (In
addition to whatever asynchronous IO it
may be doing).

async function makeOneGetRequest(requestNumber:number) {
const response = await axios.get('https://rest-example.covey.town');
console.log(`For request ${requestNumber}, server replied: `,

response.data);
}

Defining a concurrent computation

8

• An async function is a function
that creates a concurrent
computation.

• Calling the function will tell the
operating system to start the
computation.

• TS vocabulary: This computation
is called a promise

This is the address of a server
that returns the number of calls
that have been made to this
server.

async function makeOneGetRequest(requestNumber:number) {
const response = await axios.get('https://rest-example.covey.town');
console.log(`For request ${requestNumber}, server replied: `,

response.data);
}

One concurrent computation can wait for
the result of another one.

9

• Axios.get is also an async function, so it returns a
promise (let’s call it p)

• The await suspends the current computation until
the promise p returns.

• While the current computation is suspended, other
computations (including p) can run.

Example:

10

async function makeThreeSimpleRequests() {
makeOneGetRequest(1);
makeOneGetRequest(2);
makeOneGetRequest(3);
console.log("Three requests made")

}

makeThreeSimpleRequests()

$ npx ts-node example2.ts
Three requests made
For request 2, server replied: This is GET number 280 on the current server
For request 3, server replied: This is GET number 281 on the current server
For request 1, server replied: This is GET number 282 on the current server

Awaiting a promise prevents your method
from continuing

11

async function makeThreeSerialRequests(): Promise<void> {
await makeOneGetRequest(1);
await makeOneGetRequest(2);
await makeOneGetRequest(3);
console.log('Heard back from all of the requests')

}

makeThreeSerialRequests();

For request 1, server replied: This is GET number 37 on the current server
For request 2, server replied: This is GET number 38 on the current server
For request 3, server replied: This is GET number 39 on the current server
Heard back from all of the requests
Elapsed time: 364.0822000205517 milliseconds

Promise.all starts several promises
concurrently

12

async function makeThreeConcurrentRequests(): Promise<void> {
await Promise.all([

makeOneGetRequest(1),
makeOneGetRequest(2),
makeOneGetRequest(3)

])
console.log('Heard back from all of the requests')

}

• Promise.all takes a list of promises and runs them
all concurrently.

• It finishes when all the promises have finished.

Promise.all allows for concurrency

13

async function makeThreeConcurrentRequests(): Promise<void> {
await Promise.all([

makeOneGetRequest(1),
makeOneGetRequest(2),
makeOneGetRequest(3)

])
console.log('Heard back from all of the requests')

}

makeThreeConcurrentRequests();

For request 2, server replied: This is GET number 58 on the current server
For request 1, server replied: This is GET number 59 on the current server
For request 3, server replied: This is GET number 60 on the current server
Heard back from all of the requests
Elapsed time: 203.7674999833107 milliseconds

async function makeThreeConcurrentRequests():
Promise<void> {

await Promise.all([
makeOneGetRequest(1),
makeOneGetRequest(2),
makeOneGetRequest(3)

])
console.log('Heard back from all of the requests')

}

Visualizing Promise.all (1)

async function makeThreeSerialRequests():
Promise<void> {

await makeOneGetRequest(1);
await makeOneGetRequest(2);
await makeOneGetRequest(3);
console.log('Heard back from all of the

requests')
}

Sequential version: ~400msec Concurrent version: ~126msec

“Don’t make another request
until you got the last response

back”

“Make all of the requests at
the same time, then wait for

all of the responses”

Visualizing Promise.all (2)

Time Time

makeOneGetRequest #1

wait for response rs

makeOneGetRequest #3

wait for response rs

makeOneGetRequest #2

wait for response rs

makeOneGetRequest #1

wait for response rs

makeOneGetRequest #3

wait for response rs

makeOneGetRequest #2

wait for response rs

r

s send

receive

async function makeThreeConcurrentRequests():
Promise<void> {

await Promise.all([
makeOneGetRequest(1),
makeOneGetRequest(2),
makeOneGetRequest(3)

])
console.log('Heard back from all of the requests')

}

async function makeThreeSerialRequests():
Promise<void> {

await makeOneGetRequest(1);
await makeOneGetRequest(2);
await makeOneGetRequest(3);
console.log('Heard back from all of the

requests')
}

Sequential version: ~400msec Concurrent version: ~126msec

Patterns for Concurrent Code:
Example: Using a Web Service
POST /transcripts
-- adds a new student to the database,
-- returns an ID for this student.
-- requires a body parameter 'name'
-- Multiple students may have the same name.

GET /transcripts/:ID
-- returns transcript for student with given ID. Fails if no such student

DELETE /transcripts/:ID
-- deletes transcript for student with the given ID, fails if no such student

POST /transcripts/:studentID/:courseNumber
-- adds an entry in this student's transcript with given name and course.
-- Requires a body parameter 'grade’
-- Fails if there is already an entry for this course in the student's transcript

GET /transcripts/:studentID/:courseNumber
-- returns the student's grade in the specified course.
-- Fails if student or course is missing.

GET /studentids?name=string
-- returns list of IDs for student with the given name

Here is a web service
we’d like to talk to.

An Example Task Using the
Transcript Server
• Given an array of StudentIDs:

• Request each student’s transcript, and save it to disk so that
we have a copy

• Once all of the pages are downloaded and saved, print out the
total size of all of the files that were saved

Generating a promise for a student

async function promiseForTranscript(studentID: number) {
const response = await axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)
await fsPromises.writeFile(`transcript-${response.data.student.studentID}.json`,

JSON.stringify(response.data))
}

The promise is to call axios
and wait for the result.

Here is something we plan
to do later

Generating a promise for a student
(cont’d)

async function promiseForTranscript(studentID: number) {
const response = await axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)
await fsPromises.writeFile(`transcript-${response.data.student.studentID}.json`,

JSON.stringify(response.data))
}

When the file-writing
promise is fulfilled, then

the whole original promise
is fulfilled.

After we get the response, make a new
promise: this time to write the result to

a file. Then wait for that to finish.

Now, actually generate all the
promises

async function runClientAsync(studentIDs:number[]) {
console.log('Making requests for ${studentIDs}');

async function promiseForTranscript(studentID: number) { .. }

const promisesForTranscripts = studentIDs.map(promiseForTranscript)
console.log('Requests sent!');
await Promise.all(promisesForTranscripts);
const stats = await Promise.all(studentIDs.map(studentID => fsPromises.stat(`transcript-

${studentID}.json`)));
const totalSize = stats.reduce((runningTotal, val) => runningTotal + val.size, 0);
console.log(`Finished calculating size: ${totalSize}`);
console.log('Done');

}

map applies the function specified to each element in the array and returns a new
array containing the result of each of those functions

Wait for all the promises to resolve
async function runClientAsync(studentIDs:number[]) {

console.log('Making requests for ${studentIDs}');

async function promiseForTranscript(studentID: number) { .. }

const promisesForTranscripts = studentIDs.map(promiseForTranscript)
console.log('Requests sent!');
await Promise.all(promisesForTranscripts);
const stats = await Promise.all(studentIDs.map(studentID => fsPromises.stat(`transcript-

${studentID}.json`)));
const totalSize = stats.reduce((runningTotal, val) => runningTotal + val.size, 0);
console.log(`Finished calculating size: ${totalSize}`);
console.log('Done');

}

Asynchronously stat all the files
async function runClientAsync(studentIDs:number[]) {

console.log('Making requests for ${studentIDs}');

async function promiseForTranscript(studentID: number) { .. }

const promisesForTranscripts = studentIDs.map(promiseForTranscript)
console.log('Requests sent!');
await Promise.all(promisesForTranscripts);
const stats = await Promise.all(studentIDs.map(studentID => fsPromises.stat(`transcript-

${studentID}.json`)));
const totalSize = stats.reduce((runningTotal, val) => runningTotal + val.size, 0);
console.log(`Finished calculating size: ${totalSize}`);
console.log('Done');

}

..then total the sizes
async function runClientAsync(studentIDs:number[]) {

console.log('Making requests for ${studentIDs}');

async function promiseForTranscript(studentID: number) { .. }

const promisesForTranscripts = studentIDs.map(promiseForTranscript)
console.log('Requests sent!');
await Promise.all(promisesForTranscripts);
const stats = await Promise.all(studentIDs.map(studentID => fsPromises.stat(`transcript-

${studentID}.json`)));
const totalSize = stats.reduce((runningTotal, val) => runningTotal + val.size, 0);
console.log(`Finished calculating size: ${totalSize}`);
console.log('Done’);

}
‘reduce’ is what you called ‘foldl’ back in Fundies 1.

Leverage Concurrency When
Possible
• Where you place awaits can make a big difference!async function runClientAsync() {

console.log('Making a requests');
const studentIDs = [1, 2, 3, 4];
const promisesForTranscripts = studentIDs.map(
async (studentID) => {

const response = await axios.get(`https://rest-example.covey.town/transcripts/${studentID}`)
await fsPromises.writeFile(`transcript-${response.data.student.studentID}.json`, JSON.stringify(response.data))

});
console.log('Requests sent!');
await Promise.all(promisesForTranscripts);
const stats = await Promise.all(studentIDs.map(studentID => fsPromises.stat(`transcript-${studentID}.json`)));
const totalSize = stats.reduce((runningTotal, val) => runningTotal + val.size, 0);
console.log(`Finished calculating size: ${totalSize}`);

}

async function runClientAsyncSerially() {
console.log('Making a requests');
const studentIDs = [1, 2, 3, 4];
for(let studentID of studentIDs){
const response = await axios.get(`https://rest-example.covey.town/transcripts/${studentID}`);
await fsPromises.writeFile(`transcript-${response.data.student.studentID}.json`, JSON.stringify(response.data))

}
let totalSize = 0;
for(let studentID of studentIDs){
const stats = await fsPromises.stat(`transcript-${studentID}.json`);
totalSize += stats.size;

}
console.log(`Finished calculating size: ${totalSize}`);

}

Running time:
2.2 sec

This is what we mean by “your
code can become synchronous

Running time:
1.5 sec

The code we’ve seen on past slides:

This accomplishes the same function, but without concurrency:

For each student: make an
async handler to fetch their

transcript and save it

For each student: wait to
fetch their transcript, then
wait to write it, then go on

to the next student

Async/Await Programming Activity

Download the activity (includes instructions in README.md):
Linked from course webpage for Module 5

• Your task is to write a new async function,
importGrades, which takes in input of the
type ImportTranscript[].

• importGrades should create a student record
for each ImportTranscript, and then post the
grades for each of those students.

• After posting the grades, it should fetch the
transcripts for each student and return an
array of transcripts.

Learning Goals for this Lesson
• At the end of this lesson, you should be prepared to:

• Explain how to achieve concurrency through asynchronous
operations and Promise.all in TypeScript.

• Write asynchronous and concurrent code in TypeScript using
async/await and Promise.all.

26

Learning Goals for this Lesson (expanded)
• At the end of this lesson, you should be prepared to:

• Explain how to achieve concurrency through asynchronous
operations and Promise.all in TypeScript.

• Write asynchronous and concurrent code in TypeScript using
async/await and Promise.all.

• Write asynchronous code using promises and .then().
• Explain the difference between JS run-to-completion

semantics and interrupt-based semantics.

27

Additional Topics

28

General Rules for Writing Asynchronous
Code
• Don’t perform long-running computations
or synchronous IO

• Leverage concurrency when possible
• Remember that events are processed in the

order they are received
• But events may arrive in unexpected order!

• Always check for errors (try/catch for
async/await, “.catch” for promises)

Async functions use Promises Under the
Hood

30

Promises Enforce Ordering Through “Then”
• axios.get returns a

promise.

• p.then mutates that
promise so that the then
block is run immediately
after the original promise
returns.

• The resulting promise
isn’t completed until the
then block finishes.

• You can chain .then’s, to
get things that look like
p.then().then().then()

1. console.log('Making requests');
2. axios.get('https://rest-example.covey.town/')

.then((response) =>{
console.log('Heard back from server');
console.log(response.data);

});
3. axios.get('https://www.google.com/')

.then((response) =>{
console.log('Heard back from Google');
});

4. axios.get('https://www.facebook.com/')
.then((response) =>{
console.log('Heard back from Facebook');

});
5. console.log('Requests sent!');

Async/await code is compiled into
promise/then code

async function
makeThreeSerialRequests(){
1. console.log('Making first
request’);
2. await makeOneGetRequest();
3. console.log('Making second
request’);
4. await makeOneGetRequest();
5. console.log('Making third
request’);
6. await makeOneGetRequest();
7. console.log('All done!');
}
makeThreeSerialRequests();

console.log('Making first request');
makeOneGetRequest().then(() =>{
console.log('Making second request');
return makeOneGetRequest();

}).then(() => {
console.log('Making third request');
return makeOneGetRequest();

}).then(()=>{
console.log('All done!');

});

Syntax for Writing Asynchronous Code
• You can only call await from a function that is async

• You can only await on functions that return a Promise

• Beware: await makes your code synchronous (this is what we want it for)!

• Handle errors using try/catch instead of “catch” (common gotcha with
promises)

function makeOneGetRequestNoAsync(): Promise<void> {
console.log("Making Request");
return axios.get("https://rest-

example.covey.town").then((response) => {
console.log("Heard back from server");
console.log(response.data);

}).catch(err => {
console.log('Uh oh!');
console.trace(err);

});
}

async function makeOneGetRequest(): Promise<void> {
console.log("Making Request");
try {

const response = await axios.get("https://rest-
example.covey.town");

console.log("Heard back from server");
console.log(response.data);

} catch (err) {
console.log('Uh oh!'); console.trace(err);

}
}

Data Races in TS vs. Java

34

Data Races in TS vs. Java

35

let x : number = 1

async function asyncDouble() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(1);
x = x * 2 // statement 1

}

async function asyncIncrementTwice() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(2);
x = x + 1; // statement 2
x = x + 1; // statement 3

}

async function run() {
await Promise.all([asyncDouble(), asyncIncrementTwice()])
console.log(x)

}

Explanation

36

• In the JS run-to-completion semantics, statement 3 is
guaranteed to run immediately after statement 2, so the only
possible orders of execution are:

1,2,3 (1 runs before 2 and 3, final value of x is 4)
2,3,1 (2 and 3 run before 1, final value of x is 6)

• In an interrupt-based model, it is possible that statement 1 runs
BETWEEN statement 2 and statement 3, yielding the order of
execution

2,1,3 (final value of x is 5).

Explanation (2)
• Notice that there is still a data race between
statement 1 and statements 2 and 3;

• Run-to-completion semantics does not
eliminate data races entirely, but it makes
them much rarer.

37

The Self-Ticking Clock
• To make the clock self-ticking, add the
following line to your clock:

38

constructor () {
setInterval(() =>{this.tick()},50)

}

Learning Goals for this Lesson (expanded)
• At the end of this lesson, you should be prepared to:

• Explain how to achieve concurrency through asynchronous
operations and Promise.all in TypeScript.

• Write asynchronous and concurrent code in TypeScript using
async/await and Promise.all.

• Write asynchronous code using promises and .then().
• Explain the difference between JS run-to-completion

semantics and interrupt-based semantics.

39

	CS 4530: Fundamentals of Software Engineering��Module 5: Concurrency Patterns in Typescript
	Learning Goals for this Lesson
	Masking Latency with Concurrency
	Pre-emptive Multiprocessing
	An alternative model: cooperative multiprocessing
	JavaScript/TypeScript implements Cooperative Multiprocessing Using “run-to-completion” semantics
	Run-to-completion semantics
	Defining a concurrent computation
	One concurrent computation can wait for the result of another one.
	Example:
	Awaiting a promise prevents your method from continuing
	Promise.all starts several promises concurrently
	Promise.all allows for concurrency
	Visualizing Promise.all (1)
	Visualizing Promise.all (2)
	Patterns for Concurrent Code:�Example: Using a Web Service
	An Example Task Using the Transcript Server
	Generating a promise for a student
	Generating a promise for a student (cont’d)
	Now, actually generate all the promises
	Wait for all the promises to resolve
	Asynchronously stat all the files
	..then total the sizes
	Leverage Concurrency When Possible
	Async/Await Programming Activity
	Learning Goals for this Lesson
	Learning Goals for this Lesson (expanded)
	Additional Topics
	General Rules for Writing Asynchronous Code
	Async functions use Promises Under the Hood
	Promises Enforce Ordering Through “Then”
	Async/await code is compiled into promise/then code
	Syntax for Writing Asynchronous Code
	Data Races in TS vs. Java
	Data Races in TS vs. Java
	Explanation
	Explanation (2)
	The Self-Ticking Clock
	Learning Goals for this Lesson (expanded)

